MAX materials and MXene materials are new two-dimensional materials who have attracted much attention in recent years, with excellent physical, chemical, and mechanical properties, and have shown broad application prospects in lots of fields. This is a comprehensive introduction to the properties, applications, and development trends of MAX and MXene materials.
Precisely What is MAX material?
MAX phase material is a layered carbon nitride inorganic non-metallic material composed of M, A, X elements on the periodic table, collectively called “MAX phase”. M represents transition metal elements, like titanium, zirconium, hafnium, etc., A represents the main group elements, like aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is made up of M, A, X, the three aspects of the alternating composition arrangement, with hexagonal lattice structure. Because of the electrical conductivity of metal and strength, high-temperature resistance and corrosion resistance of structural ceramics, these are commonly used in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding and other fields.
Properties of MAX material
MAX material is actually a new form of layered carbon nitride inorganic non-metallic material with all the conductive and thermal conductive qualities of metal, composed of three elements with all the molecular formula of Mn 1AXn (n=1, 2 or 3), where M means the transition metal, A means the main-group elements, and X means the components of C and N. The MXene material is a graphene-like structure obtained through the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAX phases are novel two-dimensional nanomaterials composed of carbon, nitrogen, oxygen, and halogens.
Uses of MAX materials
(1) Structural materials: the excellent physical properties of MAX materials make sure they are have a wide range of applications in structural materials. As an example, Ti3SiC2 is a kind of MAX material with good high-temperature performance and oxidation resistance, which may be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials are also utilized in functional materials. As an example, some MAX materials have good electromagnetic shielding properties and conductivity and can be used to manufacture electromagnetic shielding covers, coatings, etc. Furthermore, some MAX materials likewise have better photocatalytic properties, and electrochemical properties can be utilized in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which may be utilized in energy materials. For instance, K4(MP4)(P4) is one in the MAX materials rich in ionic conductivity and electrochemical activity, which bring a raw material to produce solid-state electrolyte materials and electrochemical energy storage devices.
What are MXene materials?
MXene materials really are a new type of two-dimensional nanomaterials obtained by MAX phase treatment, just like the structure of graphene. The outer lining of MXene materials can interact with more functional atoms and molecules, along with a high specific area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation ways of MXene materials usually range from the etching treatment of the MAX phase and the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties including electrical conductivity, magnetism and optics may be realized.
Properties of MXene materials
MXene materials are a new form of two-dimensional transition metal carbide or nitride materials comprising metal and carbon or nitrogen elements. These materials have excellent physical properties, such as high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., in addition to good chemical stability and the ability to maintain high strength and stability at high temperatures.
Applications of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and therefore are widely used in energy storage and conversion. For example, MXene materials can be used as electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. Furthermore, MXene materials could also be used as catalysts in fuel cells to improve the activity and stability of the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be used in electromagnetic protection. For example, MXene materials can be used electromagnetic shielding coatings, electromagnetic shielding cloth, as well as other applications in electronic products and personal protection, boosting the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be used in sensing and detection. As an example, MXene materials can be used gas sensors in environmental monitoring, which could realize high sensitivity and high selectivity detection of gases. In addition, MXene materials could also be used as biosensors in medical diagnostics along with other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Down the road, using the continuous progress of science and technology and also the improving demand for services for applications, the preparation technology, performance optimization, and application parts of MAX and MXene materials will likely be further expanded and improved. These aspects can become the main objective of future research and development direction:
Preparation technology: MAX and MXene materials are mostly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Down the road, new preparation technologies and methods can be further explored to understand a much more efficient, energy-saving and eco-friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials has already been high, but there is still room for more optimization. In the future, the composition, structure, surface treatment along with other aspects of the fabric could be studied and improved comprehensive to improve the material’s performance and stability.
Application areas: MAX materials and MXene materials have already been widely used in numerous fields, but you can still find many potential application areas to become explored. Later on, they could be further expanded, including in artificial intelligence, biomedicine, environmental protection as well as other fields.
In summary, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a wide application prospect in many fields. With all the continuous progress of technology and science as well as the continuous improvement of application demand, the preparation technology, performance optimization and application regions of MAX and MXene materials will likely be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.